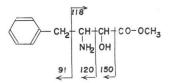
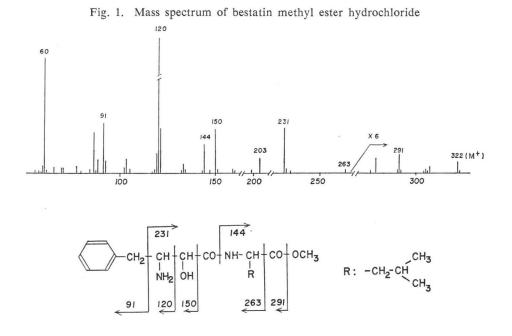
THE STRUCTURE OF BESTATIN


Sir:

In the preceding paper¹⁾, the isolation and physicochemical properties of bestatin, a new aminopeptidase B inhibitor produced by an actinomycetes, were described. In this communication, we report the structure determination of bestatin which is [(2S, 3R)-3amino-2-hydroxy-4-phenylbutanoyl]-L-leucine.

Bestatin is obtained as colorless fine needles, m.p. 233~236°C. The molecular formula was established as $C_{16}H_{24}N_2O_4$ (M.W. 308) by elemental analysis and mass spectrometry. Anal. Calcd.: C, 62.32; H, 7.82; N, 9.08; O, 20.75. Found: C, 61.86; H, 7.79; N, 8.61; O, 21.06. M⁺ m/e 308. The ultraviolet absorption spectrum suggested the presence of a phenyl chromophore [λ_{\max}^{MeOH} nm (ε): 248(104), 253(139), 259(172), 265(132) and 268 (shoulder)], and the infrared absorption spectrum suggested the presence of an amide bond (1640 and 1545 cm⁻¹ in KBr disc). Bestatin is an amphoteric compound, that is, it affords crystalline monohydrochloride and crystalline monosodium salts. It gives a positive ninhydrin reaction. Potentiometric titration showed the existence of single amino (pKa 8.1) and carboxyl (pKa 3.1) groups, with a titration equivalent of 310. Bestatin gives a monomethyl ester (M⁺ m/e 322) upon treatment with methanol-HCl, an N-acetyl derivative $(M^+ m/e 350)$ by treatment with acetic anhydride-NaOH, and the diacetyl methyl ester (M⁺ m/e 406) by treatment of the methyl ester with acetic anhydride in pyridine. These results indicate that bestatin has single free amino, hydroxyl and carboxyl groups. Acid hydrolysis of bestatin with 6 N HCl at 105°C for 16 hours yields two ninhydrin-positive products. They are separated by sulfonic acid resin (Dowex 50W \times 8) column chromatography with linear gradient elution between 0.2 M pyridine acetate buffer at pH 3.0 and 1.0 M pyridine acetate buffer at pH 4.75. The fast eluted substance is identical with L-leucine, $[\alpha]_{\rm D}^{22} + 12.9^{\circ}$ (c 0.778, 1 N HCl). The late eluted substance (I) is a new amino acid.


This amino acid is obtained as colorless needles from water, m.p. $219 \sim 221$ °C, $[\alpha]_{\rm D}^{32} + 27.9^{\circ}$ (c 0.717, 1 N HCl). It has the molecular formula C₁₀H₁₈NO₈ (M.W. 195). Anal.

Calcd.: C, 61.53; H, 6.71; N, 7.17; O, 24.59. Found: C, 61.23; H, 6.60; N, 7.04; O, 24.50. Potentiometric titration indicates the presence of single amino (pKa 8.6) and carboxyl (pKa 2.5) groups with a titration equivalent of 212. The pKa value of the carboxyl function suggests that I is not an α -amino- β -hydroxy-carboxylic acid, but β -amino- α hydroxy-carboxylic acid. The PMR spectrum of I-hydrochloride in deuteromethanol indicates the presence of a phenyl group (5 protons centered at δ 7.30) and a carbon chain: -CH₉-CH-CH-[2 protons at δ 3.06 (doublet, J=8.0 Hz), 1 proton at δ 3.80 (double triplets, J=8.0 and 3.0 Hz), and 1 proton at δ 4.11 (doublet, J=3.0 Hz)]. The mass spectrum of I-methyl ester shows significant peaks at m/e 210 (M+1)⁺, 150, 120, 118 and 91. These fragmentation patterns can arise only from methyl 3-amino-2-hydroxy-4-phenylbutanoate.

The absolute configuration at C_s of I was determined by the following procedure. The N-acetyl derivative of I was prepared by acetylation with acetic anhydride under pH control at 8.0 with $1 \times \text{NaOH}$. Oxidation of the N-acetyl derivative with potassium permanganate affords N-acetyl-D-phenylalanine, m.p. $170 \sim 171^{\circ}$ C, $[\alpha]_{D}^{2} + 40.0^{\circ}$ (*c* 0.1, methanol). Thus, the absolute configuration of C₈ of I was determined to be R.

Recently, SHIBA *et al.*²⁾ reported that the relative configuration of α -amino- β -hydroxy acids can be determined by PMR spectrometry of their oxazolidone derivatives, for which coupling constants of the vicinal methine protons of the oxazolidones are distinctly different in the *threo* (5.0±1.0 Hz) and *erythro* (9.6±0.6 Hz) isomers. This was applied to an oxazolidone derivative of **I**, though **I** is not an α -amino- β -hydroxy acid, but a β -amino- α -hydroxy acid. The oxazolidone of **I** was prepared by alkali treatment of the N-benzyloxycarbonyl derivative of **I**. The coupling

constant of the vicinal methine protons of the oxazolidone was 4.0 Hz, while that of the diastereoisomer, which was synthesized starting from D-phenylalanine, was 9.0 Hz. These results suggested that the configuration of I should be *threo*. Thus, the absolute configuration of I is 2S, 3R. This conclusion was confirmed by X-ray crystallographic analysis of the I-methyl ester hydrobromide.⁸⁾

The chemical shift of the C_8 methine proton of the I moiety (δ 4.25) of N-acetyl bestatin is significantly lower than that (δ 3.75) of bestatin hydrochloride, which indicates that the amino group of I is free in bestatin molecule. Finally, the amino acid sequence of bestatin was determined by mass spectrometric analysis of bestatin methyl ester (Fig. 1) as above.

Formation of fragment ions of m/e 120, 144 and 150 can be explained only by the structure [3-amino-2-hydroxy-4-phenylbutanoyl]-leucine methyl ester. Thus, the structure of bestatin is [(2S, 3R)-3-amino-2-hydroxy-4-phenylbutanoyl]-L-leucine.

HIROYUKI SUDA TOMOHISA TAKITA TAKAAKI AOYAGI HAMAO UMEZAWA Institute of Microbial Chemistry, Shinagawa-ku, Tokyo, 141 Japan (Received September 19, 1975)

References

- UMEZAWA, H.; T. AOYAGI, H. SUDA, M. HAMADA & T. TAKEUCHI: Bestatin, an inhibitor of aminopeptidase B, produced by actinomycetes. J. Antibiotics 29: 97~99, 1976
- FUTAGAWA, S.; T. INUI & T. SHIBA: Nuclear magnetic resonance study of the stereoisomeric 2-oxazolidone and 2-phenyl-2-oxazoline derivatives of α-amino-β-hydroxy acids. Bull. Chem. Soc. Japan 46: 3308~3310, 1973
- 3) NAKAMURA, H.; H. SUDA, T. TAKITA, T. AOYAGI, H. UMEZAWA & Y. IITAKA: X-Ray structure determination of (2S, 3R)-3-amino-2-hydroxy-4-phenylbutanoic acid, a new amino acid component of bestatin. J. Antibiotics 29: 102~103, 1976